Chem. Ber. 105, 2351-2357 (1972)

Ernst Oeser

Strukturermittlung von $C_{46}H_{34}N_2O_2$, einem Reaktionsprodukt aus 5-Methyl-2-phenyl-1-benzoyl-indolizin und Acetanhydrid, mit Hilfe der Röntgenbeugung

Aus dem Eduard-Zintl-Institut der Technischen Hochschule Darmstadt, Fachbereich Physikalische Chemie und Chemische Technologie

(Eingegangen am 1. März 1972)

Die Kristallstruktur von $C_{46}H_{34}N_2O_2$ (2), einem Reaktionsprodukt aus 5-Methyl-2-phenyl-1-benzoyl-indolizin (1) und Acetanhydrid, wurde röntgenographisch bestimmt. Die aus 4217 gemessenen Reflexen (R = 7.3%) ermittelte Struktur ist die eines 1.1-Bis-[5-methyl-2-phenyl-1-benzoyl-indolizinyl-(3)]-äthylens (2). Die spektroskopischen und chemischen Eigenschaften des nicht-ebenen Moleküls, das nahezu eine 2-zählige Achse besitzt, werden diskutiert.

Structural Investigation of C₄₆H₃₄N₂O₂, a Reaction Product

from 5-Methyl-2-phenyl-1-benzoylindolizine, by X-Ray Techniques

The crystal structure of $C_{46}H_{34}N_2O_2$ (2), which is obtained from 5-Methyl-2-phenyl-1benzoylindolizine (1) and acetic anhydride, has been determined by X-ray techniques. The result derived from 4217 reflections (R = 7.3%) shows 2 to be 1.1-bis(5-methyl-2-phenyl-1-benzoyl-3-indolizinyl)ethylene. The spectroscopic and chemical properties of the nonplane molecule 2, which has nearly a 2-fold axis of symmetry, are discussed.

5-Methyl-2-phenyl-1-benzoyl-indolizin (1) reagiert mit Acetanhydrid bei Gegenwart geringer Mengen Mineralsäure zu einer Verbindung 2 der Summenformel $C_{46}H_{34}N_2O_2{}^{(1)}$. Aus den spektroskopischen Daten (UV, NMR, IR), die für eine nahe Verwandtschaft von 1 und 2 sprachen, konnte die Struktur jedoch nicht ermittelt werden. Wir haben deshalb die im folgenden beschriebene Röntgenstrukturanalyse durchgeführt.

2 kristallisiert aus Äthanol monoklin in der Raumgruppe P2₁/c mit 4 Molekülen in der Elementarzelle. Die Gitterkonstanten sind $a = 16.83 \pm 0.01$ Å, b =12.17 ± 0.01 Å, $c = 19.31 \pm 0.01$ Å, $\beta = 117.7 \pm 0.1^{\circ}$. Die bevorzugte Wachstumsrichtung der stäbchenförmigen Kristalle ist die monokline b-Achse.

¹⁾ W. Flitsch und E. Gerstmann, Chem. Ber. 105, 2344 (1972), vorstehend. Herrn Prof. Flitsch danken wir für die Substanzproben.

Die Intensitäten von 4217 symmetrieabhängigen Reflexen der Schichten h0l bis h9l haben wir auf einem lochstreifen-gesteuerten automatischen Weissenberg-Diffraktometer mit Zählrohraufsatz vermessen. Die Meßbedingungen waren: Cu_{Kar} -Strahlung (LiF-Kristallmonochromator); Durchfahren des Reflexprofils bei gleichzeitiger Kristall- und Zählrohrdrehung, maximaler Zählerwinkel 130°.

Nach der Datenreduktion (LP-, Untergrundkorrektur, keine Berücksichtigung von Absorption) und der Abschätzung der Meßfehler²⁾ erwiesen sich 1062 Reflexe als nicht beobachtet ($F \leq 3 \cdot \sigma_{\rm F}$).

Strukturbestimmung und -verfeinerung

Die Bestimmung der Vorzeichen der 245 größten normalisierten Strukturfaktoren $(E \ge 1.8)$ führten wir mit Hilfe des Rechenprogrammes von Long³⁾ durch. Trotz der großen Zahl von Atomen in der Elementarzelle (200), durch die die Wahrscheinlichkeiten für die Richtigkeit der Tripelprodukt-Beziehungen stark herabgesetzt werden, gelang die Vorzeichen-Bestimmung ohne Schwierigkeiten; neben 3 Reflexen, die den Nullpunkt der Elementarzelle definieren, haben wir 4 weitere Reflexe gewählt und so 16 mögliche Phasensätze erhalten, von denen derjenige mit der besten Konsistenz sich als der richtige erwies. Ein Vergleich der gefundenen Vorzeichen mit denen, die sich nach Abschluß der Verfeinerung errechneten, zeigte, daß keines falsch bestimmt war. Die aus der zugehörigen E-Fouriersynthese gefundenen Lagen der Atome wurden zunächst durch eine Fouriersynthese mit allen Reflexen verfeinert und danach die Methode der kleinsten Quadrate angewendet.

Wegen der großen Anzahl von Parametern (50 Atome/asymmetrischer Einheit) wurde auf geringen Rechenzeitaufwand Wert gelegt. Zwei Maßnahmen erwiesen sich hierbei als effektiv⁴):

a) Der zeitraubendste Schritt innerhalb der Voll-Matrix-LSQ-Rechnung ist nicht die Berechnung der Strukturfaktoren und deren Ableitungen und auch nicht die Matrixinversion, sondern der Aufbau der Matrix aus den vorgegebenen Ableitungen⁵⁾. Wir konnten zeigen, daß man eine drastische Reduzierung der Rechenzeit dadurch erreichen kann, daß man den Teil des Programmes, der den Matrixaufbau besorgt, nicht in FORTRAN, sondern in der Assemblersprache TAS formuliert. Bei Problemen mit einer großen Anzahl zu variierender Parameter erzielt man hierdurch eine Einsparung von mehr als 50%, bezogen auf die Gesamtzeit der LSQ-Rechnung.

b) Das Einbeziehen der Wasserstoffatome in die LSQ-Verfeinerung führt zu einer beträchtlichen Erhöhung der Zahl der Parameter und der Rechenzeit. Für viele organische Strukturen sind die mit Hilfe der Röntgenbeugung nur recht ungenau bestimmbaren H-Atom-Lagen aber von untergeordnetem Interesse. Im vorliegenden Fall haben wir deshalb die Verfeinerung in folgender Weise vorgenommen: Nach Abschluß der isotropen Verfeinerung der Schweratome werden die H-Atome in die

²⁾ H. Paulus, Dissertation, Techn. Hochschule, Darmstadt 1966.

³⁾ R. E. Long, Ph. D. Dissertation, Univ. of California at Los Angeles 1965.

⁴⁾ Alle Rechnungen wurden mit Hilfe des Telefunken Rechners TR 440 durchgeführt.

⁵⁾ G. H. Stout und L. H. Jensen, X-ray Structure Determination, S. 396, London 1970.

Strukturfaktor-Berechnung einbezogen und erhalten den verfeinerten isotropen Temperaturfaktor des Nachbarkohlenstoffatoms. Im weiteren Verlauf werden nur die Parameter der C-, N- und O-Atome durch LSQ-Verfeinerung variiert, die Koordinaten der H-Atome werden aus der Geometrie des Schweratom-Gerüstes vor jedem Zyklus durch ein in das LSQ-Programm integriertes Unterprogramm neu berechnet. Das Verfahren ist also ein Kompromiß zwischen rechenzeitraubender Voll-Matrix-Verfeinerung und starrer Fixierung der H-Atomlagen.

Die Rechnungen führten zu einem *R*-Faktor von 7.3%. Die erhaltenen Parameter sind in Tab. 1 zusammengestellt. Zur Kontrolle wurde eine abschließende Differenz-Fouriersynthese mit diesen Parametern berechnet, und bis auf die CH₃-Gruppen wurden alle H-Atome aufgefunden.

Beschreibung und Diskussion der Ergebnisse

Aus den Atomkoordinaten wurden die in Abbild. 1 eingetragenen Bindungswinkel und -längen berechnet. Danach handelt es sich bei der vorliegenden Verbindung um das 1.1-Bis-[5-methyl-2-phenyl-1-benzoyl-indolizinyl-(3)]-äthylen (2).

Abbild. 1. Bindungslängen und -winkel für 2 (in Klammern sind die Standardabweichungen angegeben)

Oeser

Atom	x	Y	2	Beta	Betan	Bets	Beta	Beta	Bete
C1	3022(3)	-420(4)	1944(3)	40(3)	48(4)	21(1)	-7(3)	8(2)	10(2)
C2	3863(3)	-284(3)	1992(2)	36(3)	44(4)	23(2)	-9(3)	11(2)	0(2)
C3	4468(3)	26(4)	2775(2)	30(3)	67(4)	19(2)	-5(3)	7(2)	5(5)
C4	3991(3)	83(4)	3191(2)	40(3)	64(4)	19(2)	3(3)	11(2)	4(2)
C5	4258(4)	343(4)	3971(3)	56(3)	84(5)	24(2)	2(3)	17(2)	3(3)
C6	3624(5)	425(5)	4223(3)	84 (5)	102(6)	36(2)	9(4)	34(3)	5(3)
C7	2716(4)	244(5)	3685(4)	61(4)	115(6)	47(3)	12(4)	35(3)	20(4)
C8	2437(3)	-19(4)	2919(3)	48(3)	87(5)	34(2)	9(3)	24(?)	20(3)
C9	1451(4)	-91(5)	2360(3)	45(3)	171(7)	48(3)	10(4)	27(3)	33(4)
C10	2220(3)	-902 (4)	1291(3)	38(3)	45(4)	31(2)	10(3)	9(2)	14(2)
C1 1	5436(3)	212(4)	3121(3)	46(3)	67(4)	27(2)	-7(3)	14(2)	-6(3)
C12	5808(4)	734(4)	2634(3)	46(3)	62(5)	34(7)	-19(3)	20(2)	-19(3)
C13	6665(4)	442(5)	2752(3)	54(4)	125(6)	45(3)	-18(4)	23(3)	-22(3)
014	7026(5)	925(8)	2334(5)	70(5)	214(11)	55(4)	-49(6)	38(4)	-36(5)
C15	6583(7)	1730(8)	1819(5)	104(7)	187(11)	54(4)	-101(7)	51(4)	-55(5)
C16	5743(6)	2094(5)	1706(3)	113(6)	97(6)	37(3)	-58(5)	31(3)	-18(3)
C17	5344(4)	1559(4)	2115(3)	66(4)	56(5)	35(2)	-27(3)	25(2)	-15(3)
C18	4137(3)	-585(4)	1392(3)	40(3)	48(4)	27(2)	-16(3)	15(2)	-9(2)
C19	4791(4)	-1384(4)	1587(3)	59(3)	62(5)	42(2)	-11(3)	29(2)	-16(3)
C20	5065(4)	-1747(5)	1051(4)	79(5)	88(6)	63(3)	-16(4)	37(3)	-31(4)
C21	4667(5)	-1302(7)	314(4)	91(5)	147(8)	49(3)	-44(5)	39(4)	-37(5)
C22	4042(5)	-482(6)	126(3)	71(4)	140(7)	29(2)	-39(5)	21(3)	-7(4)
C23	3776(3)	-94(4)	659(3)	53(3)	67(5)	22(2)	-32(3)	16(2)	-5(3)
C24	2635(4)	-2748(4)	451(4)	56(3)	52(4)	61(3)	0(3)	-10(3)	4(3)
025	2044(3)	-2041(4)	-249(3)	44(3)	35(4)	48(3)	-16(3)	14(2)	-2(3)
C26	1775(4)	-2435(5)	-992(4)	65(4)	73(5)	54(3)	-16(4)	30(3)	-10(4)
C27	1264(4)	-1792(5)	-1655(3)	81 (4)	76(6)	42(3)	-16(4)	30(3)	-17(3)
C28	1072(3)	-741(5)	-1568(3)	54(3)	105(6)	25(2)	-22(4)	16(2)	-7(3)
C29	1326(3)	-295(4)	-812(3)	42(3)	46(5)	28(2)	-13(3)	13(2)	7(3)
C30	1230(3)	718(4)	-552(3)	40(3)	37(4)	24(2)	-4(3)	9(2)	9(2)
C31	795(3)	1635(4)	-1081(3)	42(3)	61 (5)	31(2)	-19(3)	9(2)	1(3)
C32	917(3)	2782(4)	-773(3)	44(3)	58(4)	26(2)	-14(3)	12(2)	10(2)
C33	173(4)	3493(5)	-1072(3)	54(4)	58(6)	43(2)	-13(3)	12(2)	14(3)
C34	237(4)	4552(5)	-823(4)	70(4)	63(6)	63(3)	1(4)	28(3)	4(4)
C35	1055(5)	4950(5)	-280(4)	84(5)	69(6)	5 3(3)	-15(5)	32(3)	-4(4)
C36	1810(4)	4297(5)	23(3)	71(4)	54(5)	38(2)	-36(4)	21(3)	-7(3)
C 37	1735(3)	3218(5)	-223(3)	40(3)	79(6)	28(2)	-14(3)	10(2)	12(3)
C38	1903(3)	-408(4)	501(3)	32(3)	55(5)	24(2)	-11(3)	7(2)	3(3)
C39	1583(3)	655(4)	272(3)	34(3)	52(5)	24(2)	-8(3)	9(2)	6(2)
C40	1507(3)	1461(4)	607(3)	45(3)	48(4)	26(2)	1(3)	16(2)	13(2)
C41	664(4)	1758(5)	698(3)	57(4)	99(6)	42(3)	18(4)	26(3)	21(3)
C42	575(5)	2467(6)	1207(5)	79(5)	105(6)	68(4)	31(4)	49(4)	30(4)
C43	1320(6)	2918(5)	836(4)	122(6)	98(6)	54(3)	28(6)	54(4)	9(4)
C44	2173(5)	2635(5)	1933(3)	90(5)	70(5)	34(2)	7(4)	23(3)	2(3)
C45	2267(3)	1937(4)	1425(3)	55(3)	65(5)	25(2)	1(3)	15(2)	4(3)
C46	1802(4)	-1760(5)	1381(3)	60(4)	100(6)	37(2)	-34(4)	1(2)	28(3)
N 1	3086(2)	-164(3)	2679(2)	36(?)	59(3)	23(1)	5(5)	13(1)	11(2)
W2	1765(2)	-1002(3)	-165(2)	40(2)	30(3)	29(2)	-9(2)	8(2)	2(2)
01	5939(2)	-62(3)	3797(2)	42(2)	179(5)	28(1)	2(3)	5(1)	14(2)
02	334(3)	1505(3)	-1786(2)	89(3)	75(3)	24(1)	-15(2)	-3(2)	6(2)

Tab. 1. Lage- und Temperaturparameter für 2 und ihre Standardabweichungen (alle Werte sind mit 10^{-4} zu multiplizieren)

Aus Abbild. 2 geht der räumliche Bau des Moleküls hervor. Aus ihm lassen sich alle spektroskopischen und chemischen Eigenschaften ableiten.

Abbild. 2. Stereoskopisches Bild von 2. (Die Skalierung der Schwingungsellipsoide entspricht 30% Wahrscheinlichkeit)

a) Das UV-Spektrum von 2 ist gegenüber dem der Ausgangsverbindung 1 nahezu unverändert, obwohl die beiden Indolizinsysteme über ein π -Elektronensystem miteinander verknüpft sind. Dieses Verhalten erklärt sich daraus, daß es wegen der sterischen Wechselwirkungen im Bereich der zentralen C=CH₂-Bindung nicht zu einem ebenen Bau des Moleküls kommen kann. Die Indolizinsysteme sind um die Bindungen C 1-C 10 bzw. C 38-C 10 gegenüber der Ebene des sp²-hybridisierten C 10-Atoms gedreht. Die Verdrillungswinkel betragen 55 bzw. 59°. Diese Anordnung entspricht in erster Näherung einer zweizähligen Symmetrieachse, die durch die Atome C 10 und C 46 verläuft. Die Abweichung von dieser Symmetrie führen wir auf die Beeinflussung durch die Packung der Moleküle im Kristall zurück. Über die Struktur eines ähnlichen gespannten π -Systems berichteten kürzlich Hoppe et al.⁶⁰. Diese Autoren fanden eine noch weit größere Abweichung von einer 2-zähligen Symmetrie.

Die sterischen Wechselwirkungen (s. Tab. 2) führen auch zu einer Verdrillung der Phenyl- bzw. Benzoylgruppen gegenüber den Indolizinsystemen. Einige charakteristische Winkel sind in Tab. 3 zusammengestellt.

b) Das NMR-Spektrum von 2 unterscheidet sich von dem von 1 durch ein zusätzliches Signal der beiden Protonen an C 46 bei τ 4.68 und einer Verschiebung des Signals der CH₃-Gruppen von τ 7.39 in 1 nach τ 8.13 in 2¹). Diese Verschiebung nach höherem Feld ist mit der in Abbild. 2 dargestellten molekularen Geometrie im Einklang: die Methylgruppen C 9 und C 24 liegen direkt über dem Zentrum eines Benzolringes und werden dadurch magnetisch abgeschirmt.

c) In den IR-Spektren von 1 und 2 findet sich die CO-Absorptionsbande bei sehr niedriger Wellenzahl (1620/cm), was auf die Beteiligung der polaren Grenzstruktur 3 zurückzuführen ist. Die ermittelten Bindungslängen (Abbild. 1) bestätigen diese Vermutung: Die Bindungen C_3-C_{11} (bzw. $C_{30}-C_{31}$) sind signifikant kürzer als die entsprechenden Abstände $C_{11}-C_{12}$ (bzw. $C_{31}-C_{32}$).

⁶⁾ J. Preuss, A. Gieren, K. Zechmeister, E. Daltrozzo, W. Hoppe und V. Zanker, Chem. Ber. 105, 203 (1972).

d) Der räumliche Bau des Moleküls ist auch der Grund dafür, daß die zentrale Brückendoppelbindung nicht hydrierbar ist; aus Abbild. 2 und Tab. 2 erkennt man, daß ein Angriff an der zentralen Doppelbindung wegen der Lage der Phenyl- und Methylsubstituenten der Indolizinsysteme sterisch sehr erschwert ist.

System	1	System	2	
C 9C 46	3.01 Å	C 24 – C 46	3.00 Å	
C 9-C 10	3.06	C 24-C 10	3.04	
C1-C9	3.13	C 38-C 24	3.12	
C 10-C 8	3.18	C 10-C 25	3.17	
C 38-C 29	3.05	C1 – C45	3.11	
C 3-C 19	3.11	C 30-C 41	3.24	
C 3–C 17	3.00	C 30-C 37	3.14	
C 2–C 12	3.16	C 39-C 32	3.15	
C 12-C 18	3.16	C 32-C 40	3.17	
C 17C 18	3 20	$C_{37} = C_{40}$	3.06	

Tuo, E. Illumoreaule Rollandostalle	Tab.	2.	Intramolekulare	Kontaktabständ
-------------------------------------	------	----	-----------------	----------------

Tab. 3. Einige charakteristische Verdrillungswinkel (Die die Ebenen definierenden Atome sind in Klammern angegeben)

System 1		System 2
$(C 1 \rightarrow C 8, N 1) - (C 1, C 10, C 38, C 46)$	55°	59° (C 25 \rightarrow C 30, C 39, C 38, N 2) – (C 1, C 10, C 38, C 46)
$(C 1 \rightarrow C 8, N 1) - (C 18 \rightarrow C 23)$	55°	63° (C 25 \rightarrow C 30, C 39, C 38, N 2)–(C 40 \rightarrow C 45)
$(C 1 \rightarrow C 8, N 1) - (C 3, C 11, C 12, O 1)$	37°	17° (C 25 \rightarrow C 30, C 39, C 38, N 2)–(C 30, C 31, C 32, O 2)
(C 12 →C 17) –(C 3, C 11, C 12, O 1)	36°	42° (C 32 \rightarrow C 37) – (C 30, C 31, C 32, O 2)

Wegen der sterischen Spannungen innerhalb des Moleküls und der Mesomeriebeteiligung der Substituenten sind Aussagen über die Molekülgeometrie des unsubstituierten Indolizins nur bedingt möglich. In Abbild. 3 sind die Abweichungen der Atome von der "besten" Ebene des jeweiligen Indolizinsystems eingetragen. Man erkennt, daß vor allem die Substituenten deutlich von diesen Ebenen abweichen.

Die gemittelten Bindungslängen sind in Abbild. 4 denen gegenübergestellt, die sich ergeben, wenn man die von *Longuet-Higgins* und *Coulson*⁷) berechneten Bindungsordnungen über die Beziehung von *Dewar* et al.⁸) in Bindungsabstände umrechnet. Die experimentell bestimmten Alternanzen der Bindungslängen sind durchweg größer als theoretisch vorausgesagt.

⁷⁾ H. C. Longuet-Higgins und C. A. Coulson, Trans. Faraday Soc. 43, 87 (1947).

⁸⁾ M. J. S. Dewar und T. Morita, J. Amer. chem. Soc. 91, 796 (1969).

Abbild. 3. Abweichungen der Atome von den Ebenen der Indolizinsysteme in Å Abbild. 4. Vergleich zwischen den experimentellen (eingerahmt) und den berechneten Bindungslängen im Indolizinsystem

Dem Verband der Chemischen Industrie e.V. – Fonds der Chemischen Industrie – und der Deutschen Forschungsgemeinschaft danke ich für Sachmittel und Gewährung von Rechenzeit. Herrn Prof. Dr. G. Habermehl danke ich für den Anstoß zu dieser Arbeit und sein Interesse am weiteren Fortgang.

[60/72]